Genetic programming and rough sets: A hybrid approach to bankruptcy classification
نویسندگان
چکیده
The high social costs associated with bankruptcy have spurred searches for better theoretical understanding and prediction capability. In this paper, we investigate a hybrid approach to bankruptcy prediction, using a genetic programming algorithm to construct a bankruptcy prediction model with variables from a rough sets model derived in prior research. Both studies used data from 291 US public companies for the period 1991 to 1997. The second stage genetic programming model developed in this research consists of a decision model that is 80% accurate on a validation sample as compared to the original rough sets model which was 67% accurate. Additionally, the genetic programming model reveals relationships between variables that are not apparent in either the rough sets model or prior research. These findings indicate that genetic programming coupled with rough sets theory can be an efficient and effective hybrid modeling approach both for developing a robust bankruptcy prediction model and for offering additional theoretical insights. 2002 Published by Elsevier Science B.V.
منابع مشابه
Bankruptcy Prediction: Dynamic Geometric Genetic Programming (DGGP) Approach
In this paper, a new Dynamic Geometric Genetic Programming (DGGP) technique is applied to empirical analysis of financial ratios and bankruptcy prediction. Financial ratios are indeed desirable for prediction of corporate bankruptcy and identification of firms’ impending failure for investors, creditors, borrowing firms, and governments. By the time, several methods have been attempted in...
متن کاملA hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملA Hybrid Approach to Credit Scoring Applying Rough Set and Genetic Programming
This paper applies a hybrid classification approach combining rough set and genetic programming (GP) to construct the credit scoring model. Comparing with the previous credit scoring model only based on GP, the hybrid method not only makes an improvement in the average classification accuracy, but also saves the required computational effort.
متن کاملRough sets theory in site selection decision making for water reservoirs
Rough Sets theory is a mathematical approach for analysis of a vague description of objects presented by a well-known mathematician, Pawlak (1982, 1991). This paper explores the use of Rough Sets theory in site location investigation of buried concrete water reservoirs. Making an appropriate decision in site location can always avoid unnecessary expensive costs which is very important in constr...
متن کاملFuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection
Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European Journal of Operational Research
دوره 138 شماره
صفحات -
تاریخ انتشار 2002